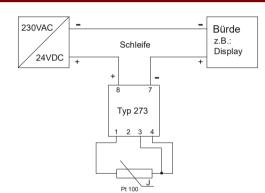


Web: www.LKMelectronic.de Mail: info@LKMelectronic.de

EINSATZHINWEISE TYP 273

Der Typ 273 ist ein digitaler Messumformer für Pt100/1000 Temperatursensoren. Er wandelt den temperaturabhängigen Widerstand in ein Normstromsignal von 4...20mA um. Er ist speziell für die Montage auf der 35mm Hutschiene vorgesehen, kann aber auch in andere passende Gehäuse montiert werden.

ÖFFNEN DES GEHÄUSES UND LAGE DER EINSTELLELEMENTE


Zum Öffnen der Klarsichthaube muss diese vorsichtig an den schmalen Stellen nach innen gedrückt und abgezogen werden.

Auf der Oberseite des Messumformers befindet sich ein Einstellregler zum Feinabgleich des Ausgangsstromes. Die Lage des Reglers ist aus dem Bild ersichtlich. Der Regler ist gegen versehentliches Verstellen durch eine Versiegelung gesichert.

Über die Schiebeschalter können 13 verschiedene Messbereiche eingestellt werden.

Die Positionen und die ON/OFF -Stellungen sind gekennzeichnet.

AUSSENBESCHALTUNG

Der Messumformer 273 wird in 3- oder 2-Leiterschaltung betrieben. Der Widerstand der Zuleitung geht in 3L-Schaltung nicht in das Messergebnis ein, wenn alle 3 Leitungen den gleichen Widerstand haben. Bei 2L-Schaltung müssen die Klemme 3 und 4 verbunden werden. Messfehler durch die Zuleitung können über den Zero-Regler (±2,5K) ausgeglichen werden.

Der Ausgangsstrom ist temperaturlinear.

BEREICHSWAHL

Über 4 Schiebeschalter lassen sich 13 verschiedene Messbereiche einstellen. Der Messumformer wird mit dem eingestellten Messbereich 0...50°C ausgeliefert. Alle anderen Einstellungen sind nachfolgender Tabelle zu entnehmen.

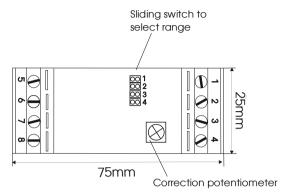
Die Abfrage nach dem Messbereich erfolgt permanent. Nach einem Wechsel des Messbereiches muss die Stromversorgung nicht unterbrochen werden. Die Erkennung des Sensors (Pt100/Pt1000) erfolgt im laufenden Betrieb ebenfalls automatisch. Für Pt1000 stehen die Messbereiche 6...8 nicht zur Verfügung.

Messbereiche	Schiebe- schalter 1 2 3 4
-20°C150°C	1-1-1-1
0°C50°C	0-1-1-1
0°C100°C	1-0-1-1
0°C200°C	0-0-1-1
0°C300°C	1-1-0-1
0°C400°C	0-1-0-1
0°C500°C	1-0-0-1
0°C600°C	0-0-0-1
-50°C50°C	1-1-1-0
-100°C100°C	0-1-1-0
-30°C70°C	1-0-1-0
-40°C60°C	0-0-1-0
0°C250°C	1-1-0-0

FEHLERSUCHE UND FEHLERBETRACHTUNG

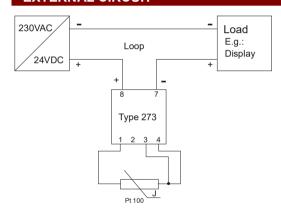
Bei Messungen mit Widerstandsthermometern können konstruktive und messtechnisch bedingte Einflüsse das Messergebnis verfälschen. Nachfolgend werden die wichtigsten Effekte, die zu Fehlmessungen führen können, kurz aufgeführt:

aufgetretener Fehler	Ursache der Störung
Kein Strom in der Schleife	Keine Versorgungsspannung
	Spannung verpolt
	Anzeigegerät defekt
	Kabelbruch in der Zuleitung
Ausgangssignal ca. 3mA	Fühlerkurzschluss
Ausgangssignal >20mA	Fühlerbruch
	Schlechter Isolationswiderstand in den Zuleitungen
Temperaturanzeige schwankt	Feuchtigkeit im Sensor oder in der Sensorzuleitung
	Die Bürde ist zu groß
	Die Versorgungsspannung zu gering
Deutlich zu hohe Anzeige	2-Leiter: Leitungswiderstand zu hoch
	3-Leiter: Leitungswiderstand der 3 Adern nicht gleich
Messwert stimmt nicht mit dem erwarteten Wert überein	Messbereichsauswahl prüfen



Web: www.LKMelectronic.de Mail: info@LKMelectronic.de

TYPE 273 INSTRUCTIONS FOR USE


The Type 273 is a digital measuring transducer for Pt100/1000 temperature sensors. It converts the temperature-dependent resistance into a standard voltage signal of 4 to 20 mA. It is specifically designed for installing on a 35-mm DIN - rail but may also be mounted in other compatible enclosures.

OPENING THE HOUSING AND LOCATION OF CONTROLS

The measuring transducer features on its upper side a setting controller for fine-tuning the output current. The position of the controller is depicted in the illustration below. The controller is protected against inadvertent adjustments. Use the Sliding switch to set 13 different measuring ranges. The positions and the ON/OFF positions are marked.

EXTERNAL CIRCUIT

The measuring transducer 273 is operated with a 3-/2-lead circuit. The resistance of the input lead in a 3-lead circuit is not included in the measuring result if all 3 leads have the same resistance. In case of a 2-lead circuit, terminal 3 and 4 must be connected. Measuring errors due to the input lead can be compensated with the zero controller (±2.5 K).

The output current is temperature linear.

RANGE SELECTION

Use 4 jumpers to select 13 different measuring ranges. The measuring transducer is set at the factory to a measuring range of 0 to 50°C. Please consult the table below for all other settings.

The query for the measuring range is permanent. It is not necessary to disconnect the unit from the power supply after changing the measuring range. The detection of the sensor (Pt100/Pt1000) is also automatic while the unit is being operated. The measuring ranges 6 to 8 are not available for Pt1000.

Measuring Ranges	Sliding switch
	1234
-20°C to 150 °C	1-1-1-1
0°C to 50 °C	0-1-1-1
0°C to 100 °C	1-0-1-1
0°C to 200 °C	0-0-1-1
0°C to 300 °C	1-1-0-1
0°C to 400 °C	0-1-0-1
0°C to 500 °C	1-0-0-1
0°C to 600 °C	0-0-0-1
-50°C to 50 °C	1-1-1-0
-100°C to 100 °C	0-1-1-0
-30°C to 70 °C	1-0-1-0
-40°C to 60 °C	0-0-1-0
0°C to 250 °C	1-1-0-0

TROUBLESHOOTING AND ERROR ANALYSIS

When measuring with resistance thermometers, factors based on the design and measuring technology may falsify the results measured. The most important effects that can lead to flawed or erroneous measurements are listed in brief below:

Error	Cause
No current in the loop	No supply voltage
	Incorrect polarity
	Defective display unit
	Input lead breakage
Output signal approx. 3 mA	Sensor short circuit
Output signal >20 mA	Sensor breakage
	Poor insulation resistance in the input leads
Temperature read-out fluctuates	Moisture in the sensor or the sensor inputlead
	Load resistance is too great
	Supply voltage is too low
Read-out is clearly too high	2-lead circuit: Lead resistance too high
	3-lead circuit: Lead resistance of all 3 leads not equal
Measured value does not match the expected value	Check measuring range selection

